Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Clin Rheumatol ; 43(5): 1541-1550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565803

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is associated with a significant risk of atherosclerotic cardiovascular disease, especially in the development of premature atherosclerosis. Specific prediction models for premature atherosclerosis in SLE patients are still limited. The objective of this study was to establish a predictive model for premature atherosclerosis in SLE. METHOD: The study collected clinical and laboratory data from 148 SLE patients under the age of 55, between January 2021 and June 2023. The least absolute shrinkage and selection operator logistic regression model was utilized to identify potentially relevant features. Subsequently, a nomogram was developed using multivariable logistic analysis. The performance of the nomogram was evaluated through a receiver-operating characteristic curve, calibration curve, and decision curve analysis (DCA). RESULTS: A total of 148 SLE patients who fulfilled the inclusion criteria were enrolled in the study, of whom 53 patients (35.81%) met the definition of premature atherosclerosis. Hypertension, antiphospholipid syndrome, azathioprine use, duration of glucocorticoid, and age of patients were included in the multivariable regression. The nomogram, based on the non-overfitting multivariable model, was internally validated and demonstrated sufficient clinical utility for assessing the risk of premature atherosclerosis (area under curve: 0.867). CONCLUSIONS: The comprehensive nomogram constructed in this study serves as a useful and convenient tool for evaluating the risk of premature atherosclerosis in SLE patients. It is helpful for clinicians to early identify SLE patients with premature atherosclerosis and facilitates the implementation of more effective preventive measures. Key Points • SLE patients are at a significantly higher risk of developing premature atherosclerosis compared to the general population, and this risk persists even in cases with low disease activity. Traditional models used to evaluate and predict premature atherosclerosis in SLE patients often underestimate the risk. • This study establishes a comprehensive and visually orientated predictive model of premature atherosclerosis in SLE patients, based on clinical characteristics. • The scoring system allows for convenient and effective prediction of individual incidence of premature atherosclerosis, and could provide valuable information for identification and making further intervention decision.


Assuntos
Síndrome Antifosfolipídica , Aterosclerose , Hipertensão , Lúpus Eritematoso Sistêmico , Humanos , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/epidemiologia , Aterosclerose/etiologia , Síndrome Antifosfolipídica/complicações , Hipertensão/complicações , Incidência , Fatores de Risco
2.
J Am Chem Soc ; 146(12): 8298-8307, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498306

RESUMO

Antiferroelectric materials with an electrocaloric effect (ECE) have been developed as promising candidates for solid-state refrigeration. Despite the great advances in positive ECE, reports on negative ECE remain quite scarce because of its elusive physical mechanism. Here, a giant negative ECE (maximum ΔS ∼ -33.3 J kg-1 K-1 with ΔT ∼ -11.7 K) is demonstrated near room temperature in organometallic perovskite, iBA2EA2Pb3I10 (1, where iBA = isobutylammonium and EA = ethylammonium), which is comparable to the greatest ECE effects reported so far. Moreover, the ECE efficiency ΔS/ΔE (∼1.85 J cm kg-1 K-1 kV-1) and ΔT/ΔE (∼0.65 K cm kV-1) are almost 2 orders of magnitude higher than those of classical inorganic ceramic ferroelectrics and organic polymers, such as BaTiO3, SrBi2Ta2O9, Hf1/2Zr1/2O2, and P(VDF-TrFE). As far as we know, this is the first report on negative ECE in organometallic hybrid perovskite ferroelectric. Our experimental measurement combined with the first-principles calculations reveals that electric field-induced antipolar to polar structural transformation results in a large change in dipolar ordering (from 6.5 to 45 µC/cm2 under the ΔE of 18 kV/cm) that is closely related to the entropy change, which plays a key role in generating such giant negative ECE. This discovery of field-induced negative ECE is unprecedented in organometallic perovskite, which sheds light on the exploration of next-generation refrigeration devices with high cooling efficiency.

3.
Sci Rep ; 14(1): 6170, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486035

RESUMO

Employee scheduling aims to assign employees to shifts to satisfy daily workload and constraints. Some employee scheduling problems and their variants have been proven NP-hard, and a series of works have been done. However, the existing algorithms consider the fixed work time, which may cause plenty of overstaffing and understaffing phenomenons. Hence, this paper proposes a fast-flexible strategy based approach (FFS) to solve it. FFS introduces the idea of soft work time, which allows the work time of employees can be adjusted in a range. Based on this, we set the flextime strategy to decide the specific work time of each employee every day. Besides, FFS adopts a pairwise-allocated strategy and proficiency average matrix to boost its efficiency and effectiveness. Finally, the extensive experimental evaluation shows that FFS is more effective and efficient than the baselines for solving the employee scheduling problem considering soft work time.

5.
Adv Mater ; : e2312237, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363019

RESUMO

Inverted inorganic perovskite solar cells (PSCs) is potential as the top cells in tandem configurations, owing to the ideal bandgap, good thermal and light stability of inorganic perovskites. However, challenges such as mismatch of energy levels between charge transport layer and perovskite, significant non-radiative recombination caused by surface defects, and poor water stability have led to the urgent need for further improvement in the performance of inverted inorganic PSCs. Herein, the fabrication of efficient and stable CsPbI3-x Brx PSCs through surface treatment of (3-mercaptopropyl) trimethoxysilane (MPTS), is reported. The silane groups in MPTS can in situ crosslink in the presence of moisture to build a 3-dimensional (3D) network by Si-O-Si bonds, which forms a hydrophobic layer on perovskite surface to inhibit water invasion. Additionally, -SH can strongly interact with the undercoordinated Pb2+ at the perovskite surface, effectively minimizing interfacial charge recombination. Consequently, the efficiency of the inverted inorganic PSCs improves dramatically from 19.0% to 21.0% under 100 mW cm-2 illumination with MPTS treatment. Remarkably, perovskite films with crosslinked MPTS exhibit superior stability when soaking in water. The optimized PSC maintains 91% of its initial efficiency after aging 1000 h in ambient atmosphere, and 86% in 800 h of operational stability testing.

6.
Food Chem ; 445: 138720, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359570

RESUMO

The tendency of ovotransferrin (OVT) to unfold and aggregate under 60 °C severely restricted sterilization temperature during egg processing. Searching for efficient strategies to improve OVT thermal stability is essential for improving egg product quality and processing suitability. Here, we investigated the effect of sulfate polysaccharide (dextran sulfate, DS) on heat-induced aggregation of OVT. We found that DS can effectively suppress amorphous aggregation of OVT at pH 7.0 after heating. Strikingly, the addition of 5 µM DS fully suppressed insoluble aggregates formation of 0.5 mg/mL OVT. Structure analysis confirmed that DS preserves nearly the entire secondary and tertiary structure of OVT during heating. The steric hindrance effect arising from strong electrostatic interactions between OVT and DS, coupled with reduced OVT hydrophobicity, is the underlying mechanism in suppressing protein-protein interactions, thus enhancing thermal stability. These findings suggest DS could act as protein stabilizers and chaperones, enhancing the thermostability of heat-sensitive proteins.


Assuntos
Conalbumina , Temperatura Alta , Conalbumina/química , Sulfato de Dextrana , Temperatura , Eletricidade Estática
7.
Angew Chem Int Ed Engl ; 63(14): e202401221, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38342759

RESUMO

Metal-free molecular antiferroelectric (AFE) holds a promise for energy storage on account of its unique physical attributes. However, it is challenging to explore high-curie temperature (Tc) molecular AFEs, due to the lack of design strategies regarding the rise of phase transition energy barriers. By renewing the halogen substitution strategy, we have obtained a series of high-Tc molecular AFEs of the halogen-substituted phenethylammonium bromides (x-PEAB, x=H/F/Cl/Br), resembling the binary stator-rotator system. Strikingly, the p-site halogen substitution of PEA+ cationic rotators raises their phase transition energy barrier and greatly enhances Tc up to ~473 K for Br-PEAB, on par with the record-high Tc values for molecular AFEs. As a typical case, the member 4-fluorophenethylammonium bromide (F-PEAB) shows notable AFE properties, including high Tc (~374 K) and large electric polarization (~3.2 µC/cm2). Further, F-PEAB also exhibits a high energy storage efficiency (η) of 83.6 % even around Tc, catching up with other AFE oxides. This renewing halogen substitution strategy in the molecular AFE system provides an effective way to design high-Tc AFEs for energy storage devices.

8.
Comput Biol Chem ; 108: 107992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056378

RESUMO

Most existing graph neural network-based methods for predicting miRNA-disease associations rely on initial association matrices to pass messages, but the sparsity of these matrices greatly limits performance. To address this issue and predict potential associations between miRNAs and diseases, we propose a method called strengthened hypergraph convolutional autoencoder (SHGAE). SHGAE leverages multiple layers of strengthened hypergraph neural networks (SHGNN) to obtain robust node embeddings. Within SHGNN, we design a strengthened hypergraph convolutional network module (SHGCN) that enhances original graph associations and reduces matrix sparsity. Additionally, SHGCN expands node receptive fields by utilizing hyperedge features as intermediaries to obtain high-order neighbor embeddings. To improve performance, we also incorporate attention-based fusion of self-embeddings and SHGCN embeddings. SHGAE predicts potential miRNA-disease associations using a multilayer perceptron as the decoder. Across multiple metrics, SHGAE outperforms other state-of-the-art methods in five-fold cross-validation. Furthermore, we evaluate SHGAE on colon and lung neoplasms cases to demonstrate its ability to predict potential associations. Notably, SHGAE also performs well in the analysis of gastric neoplasms without miRNA associations.


Assuntos
MicroRNAs , MicroRNAs/genética , Algoritmos , Redes Neurais de Computação , Biologia Computacional/métodos
9.
Int J Rheum Dis ; 27(1): e14899, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705400

RESUMO

Seronegative rheumatoid arthritis (SNRA) can be a rapid-progressing and highly disabling disease. Anti-PTX3 autoantibody may be a potential biomarker in SNRA diagnosis. SNRA patients could respond well to upadacitinib.


Assuntos
Antirreumáticos , Artrite Reumatoide , Humanos , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Biomarcadores , Antirreumáticos/uso terapêutico
10.
Angew Chem Int Ed Engl ; 63(7): e202318742, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38153344

RESUMO

Recently, boron (B)/nitrogen (N)-embedded polycyclic aromatic hydrocarbons (PAHs), characterized by multiple resonances (MR), have attracted significant attention owing to their remarkable features of efficient narrowband emissions with small full width at half maxima (FWHMs). However, developing ultra-narrowband pure-green emitters that comply with the Broadcast Service Television 2020 (BT2020) standard remains challenging. Precise regulation of the MR distribution regions allows simultaneously achieving the emission maximum, FWHM value, and spectral shape that satisfy the BT2020 standard. The proof-of-concept molecule TPABO-DICz exhibited ultrapure green emission with a dominant peak at 515 nm, an extremely small FWHM of 17 nm, and Commission Internationale de l'Eclairage (CIE) coordinates of (0.17, 0.76). The corresponding bottom-emitting organic light-emitting diode (OLED) exhibited a remarkably high CIEy value (0.74) and maximum external quantum efficiency (25.8 %). Notably, the top-emitting OLED achieved nearly BT2020 green color (CIE: 0.14, 0.79) and exhibited a state-of-the-art maximum current efficiency of 226.4 cd A-1 , thus fully confirming the effectiveness of the above strategy.

11.
Small ; : e2310529, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38148294

RESUMO

2D organic-inorganic hybrid perovskites (OIHPs) have become one of the hottest research topics due to their excellent environmental stability and unique optoelectronic properties. Recently, the ferroelectricity and thermochromism of 2D OIHPs have attracted increasing interests. Integrating ferroelectricity and thermochromism into perovskites can significantly promote the development of multichannel intelligent devices. Here, a novel 2D Dion-Jacobson OIHP of the formula (3AMP)PbI4 (where 3AMP is 3-(aminomethyl)pyridinium) is reported, which has a remarkable spontaneous polarization value (Ps) of 15.6 µC cm-2 and interesting thermochromism. As far it is known, such a large Ps value is the highest for 2D OIHPs recorded so far. These findings will inspire further exploration and application of multifunctional perovskites.

13.
Angew Chem Int Ed Engl ; 62(45): e202309416, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37733923

RESUMO

Ferroelectric photovoltaics driven by spontaneous polarization (Ps ) holds a promise for creating the next-generation optoelectronics, spintronics and non-volatile memories. However, photoactive ferroelectrics are quite scarce in single homogeneous phase, owing to the severe Ps fatigue caused by leakage current of photoexcited carriers. Here, through combining inorganic and organic components as building blocks, we constructed a series of ferroelectric semiconductors of 2D hybrid perovskites, (HA)2 (MA)n-1 Pbn Br3n+1 (n=1-5; HA=hexylamine and MA=methylamine). It is intriguing that their Curie temperatures are greatly enhanced by reducing the thickness of inorganic frameworks from MAPbBr3 (n=∞, Tc =239 K) to n=2 (Tc =310 K, ΔT=71 K). Especially, on account of the coupling of room-temperature ferroelectricity (Ps ≈1.5 µC/cm2 ) and photoconductivity, n=3 crystal wafer was integrated as channel field effect transistor that shows excellent a large short-circuit photocurrent ≈19.74 µA/cm2 . Such giant photocurrents can be modulated through manipulating gate voltage in a wide range (±60 V), exhibiting gate-tunable memory behaviors of three current states ("-1/0/1" states). We believe that this work sheds light on further exploration of ferroelectric materials toward new non-volatile memory devices.

14.
Chem Sci ; 14(37): 10347-10352, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37772112

RESUMO

The ferro-pyro-phototronic (FPP) effect, coupling photoexcited pyroelectricity and photovoltaics, paves an effective way to modulate charge-carrier behavior of optoelectronic devices. However, reports of promising FPP-active systems remain quite scarce due to a lack of knowledge on the coupling mechanism. Here, we have successfully enhanced the FPP effect in a series of ferroelectrics, BA2Cs1-xMAxPb2Br7 (BA = butylammonium, MA = methylammonium, 0 ≤ x ≤ 0.34), rationally assembled by mixing cage cations into 2D metal-halide perovskites. Strikingly, chemical alloying of Cs+/MA+ cations leads to the reduction of exciton binding energy, as verified by the x = 0.34 component; this facilitates exciton dissociation into free charge-carriers and boosts photo-activities. The crystal detector thus displays enhanced FPP current at zero bias, almost more than 10 times higher than that of the x = 0 prototype. As an innovative study on the FPP effect, this work affords new insight into the fundamental principle of ferroelectrics and creates a new strategy for self-driven photodetection.

15.
Nat Commun ; 14(1): 5821, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726264

RESUMO

Broadband spectral photoresponse has shown bright prospects for various optoelectronic devices, while fulfilling high photoactivity beyond the material bandgap is a great challenge. Here, we present a molecular pyroelectric, N-isopropylbenzylaminium trifluoroacetate (N-IBATFA), of which the broadband photo-pyroelectric effects allow for self-driven wide spectral photodetection. As a simple organic binary salt, N-IBATFA possesses a large polarization (~9.5 µC cm-2), high pyroelectric coefficient (~6.9 µC cm-2 K-1) and figures-of-merits (FV = 187.9 × 10-2 cm2 µC-1; FD = 881.5 × 10-5 Pa-0.5) comparable to the state-of-art pyroelectric materials. Particularly, such intriguing attributes endow broadband photo-pyroelectric effect, namely, transient currents covering ultraviolet (UV, 266 nm) to near-infrared (NIR, 1950 nm) spectral regime, which breaks the restriction of its optical absorption and thus allows wide UV-NIR spectral photodetection. Our finding highlights the potential of molecular system as high-performance candidates toward self-powered wide spectral photodetection.

16.
Anal Biochem ; 679: 115297, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619903

RESUMO

Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are associated with various complex human diseases. They can serve as disease biomarkers and hold considerable promise for the prevention and treatment of various diseases. The traditional random walk algorithms generally exclude the effect of non-neighboring nodes on random walking. In order to overcome the issue, the neighborhood constraint (NC) approach is proposed in this study for regulating the direction of the random walk by computing the effects of both neighboring nodes and non-neighboring nodes. Then the association matrix is updated by matrix multiplication for minimizing the effect of the false negative data. The heterogeneous lncRNA-disease network is finally analyzed using an unbalanced random walk method for predicting the potential lncRNA-disease associations. The LUNCRW model is therefore developed for predicting potential lncRNA-disease associations. The area under the curve (AUC) values of the LUNCRW model in leave-one-out cross-validation and five-fold cross-validation were 0.951 and 0.9486 ± 0.0011, respectively. Data from published case studies on three diseases, including squamous cell carcinoma, hepatocellular carcinoma, and renal cell carcinoma, confirmed the predictive potential of the LUNCRW model. Altogether, the findings indicated that the performance of the LUNCRW method is superior to that of existing methods in predicting potential lncRNA-disease associations.


Assuntos
Neoplasias Renais , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Algoritmos , Área Sob a Curva , Caminhada
17.
Small ; 19(49): e2303909, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37612806

RESUMO

Photorefractive effect of ferroelectrics refers to the light-induced change of refractive index, which is an optical controlling avenue in holographic storage and image processing. For most ferroelectrics, however, the small photorefractive effect (10-5 -10-4 ) hinders their practical application and it is urgent to exploit new photorefractive system. Here, for the first time, strong photorefractive effects are achieved in a 2D metal-halide ferroelectric, [CH3 (CH2 )3 NH3 ]2 (CH3 NH3 )Pb2 Cl7 (1), showing large spontaneous polarization (≈4.1 µC cm-2 ) and wide optical bandgap (≈3.20 eV). Notably, under light irradiation, 1 enables a large variation of refractive indices up to ≈ 1× 10-3 , being one order higher than the existing materials and comparable to the state-of-the-art inorganic ferroelectrics. This intriguing photorefractive behavior involves with the sharp variation of polarization caused by photo-pyroelectricity. As the first report of 2D metal-halide photorefractive ferroelectric, this work sheds light on optical controlling of physical properties in electric-ordered materials.

18.
Opt Express ; 31(15): 24273-24282, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475258

RESUMO

The bandgap and polarization field play a key role in the ferroelectric photovoltaic effect. However, narrow bandgap induced electrical conductivity always brings out a depression of the photovoltaic performances. Based on the mechanisms of the photovoltaic effect and resistance switching behaviors in ferroelectric materials, this work realizes an evolution between the two effects by engineering the polarization field and barrier characteristics, which addresses the trade-off issues between the bandgap and polarization for ferroelectric photovoltaic effect. SrCoOx (SC, 2.5≤x≤3) with multivalent transition is introduced into Na0.5Bi0.5TiO3 (NBT) matrix material to engineered the polarization field and barrier characteristics. (1-x)NBT-xSC (x=0.03, 0.05, 0.07) solid solution films present an evolution of ferroelectric photovoltaic effect to grow out of nothing again to the disappearance of the photovoltaic effect and the appearance of resistance switching behavior. The 0.95NBT-0.05SC film achieve the open-circuit voltage of 0.81 V and the short-circuit current of 23.52 µA/cm2, and the 0.93NBT-0.07SC film obtains the resistive switching behavior with switch ratio of 100. This work provides a practicable strategy to achieve the fascinating evolution between photovoltaic effect and resistive switching.

19.
Small ; 19(46): e2304190, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37452433

RESUMO

Metal halide inorganic perovskites show excellent thermal stability compared to organic-inorganic perovskites. However, the performance of inorganic perovskite solar cells (PSCs) is far from theoretical values, together with unsatisfactory stability, mainly due to the poor interfacial properties. In this work, a facial but effective method is reported to realize high-performance inorganic PSCs by post-modifying the perovskite surface with 2-thiophene ethylamine (TEA). It is found that amine group from TEA can favorably interact with the undercoordinated Pb2+ via Lewis acid-based coordination, while thiophene ring with electron-rich sulfur assists such interaction by functioning as an electron donor. The synergetic interaction allows TEA to passivate perovskite film defects more efficiently, as compared to phenethylamine (PEA) with less electron-donating ability. Moreover, perovskite valence band is slightly upward shift to match with hole transport material and facilitate hole transfer. These combinations result in a reduced non-radiative charge recombination and improved charge carrier lifetime. Consequently, PSCs with TEA modification shows a drastic improvement of VOC by 54 mV, yielding a champion PCE of 21.3%, much higher than the control PSCs (19.3%), along with improved ambient stability. This work demonstrates that surface modifier with an electron-rich moiety is critical for achieving efficient and stable inorganic PSCs.

20.
Gene ; 878: 147580, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339722

RESUMO

To investigate the correlation between NPPB gene variants and pulse pressure hypertension and the underlying regulatory mechanisms and try to confirm that NPPB may be a potential molecular target of gene therapy for pulse pressure hypertension. A total of 898 participants were recruited from the First Affiliated Hospital of Fujian Medical University and the plasmids with differential expression of NPPB were constructed. Genotype distribution of NPPB(rs3753581, rs198388, and rs198389)was analyzed and the expression of N-terminal pro-B-type natriuretic peptide(NT-proBNP) and renin-angiotensin -aldosterone system(RAAS) related indicators were identified in the groups studied. According to a genotype analysis, there was a significant difference in the genotype distribution of NPPB rs3753581 among the groups (P = 0.034). In logistic regression analysis, NPPB rs3753581 TT was associated with a 1.8-fold greater risk of pulse pressure hypertension than NPPB rs3753581 GG (odds ratio = 1.801; 95% confidence interval: 1.070-3.032; P = 0.027). The expression of NT-proBNP and RAAS related indicators in clinical and laboratory samples showed striking differences. The activity of firefly and Renilla luciferase in pGL-3-NPPB-luc (-1299G) was higher than pGL-3-NPPBmut-luc(-1299 T)(P < 0.05). The binding of NPPB gene promoter rs3753581 (-1299G) with transcription factors IRF1, PRDM1, and ZNF263 was predicted and validated by the bioinformatics software TESS and chromatin immunoprecipitation(P < 0.05). NPPB rs3753581 was correlated with genetic susceptibility to pulse pressure hypertension and the transcription factors IRF1, PRDM1, and ZNF263 may be involved in the regulation of NPPB rs3753581 promoter (-1299G) on the expression of NT-proBNP/RAAS.


Assuntos
Hipertensão , Fatores de Transcrição , Humanos , Pressão Sanguínea/genética , Fatores de Transcrição/genética , Hipertensão/genética , Peptídeo Natriurético Encefálico/genética , Genótipo , Fragmentos de Peptídeos/genética , Proteínas de Ligação a DNA/genética , Fator Regulador 1 de Interferon/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...